Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3972843.v1

ABSTRACT

This year-long research analysed emerging risks in influent, effluent wastewaters and biosolids from six wastewater treatment plants in Spain's Valencian Region. Specifically, it focused on human enteric and respiratory viruses, bacterial and viral faecal contamination indicators, extended spectrum beta-lactamases-producing Escherichia coli and antibiotic resistance genes. Additionally, particles and microplastics in biosolid and wastewater samples were assessed. Human enteric viruses were prevalent in influent wastewater, with limited post-treatment reduction. Wastewater treatment effectively eliminated respiratory viruses, except for low levels of SARS-CoV-2 in effluent and biosolid samples, suggesting minimal public health risk. Antibiotic resistance genes and microplastics were persistently found in effluent and biosolids, thus indicating treatment inefficiencies and potential environmental dissemination. This multifaced research sheds light on diverse contaminants present after water reclamation, emphasizing the interconnectedness of human, animal, and environmental health in wastewater management. It underscores the need for a One Health approach to address the United Nations Sustainable Development Goals.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.22.21253818

ABSTRACT

Background: Isolation, contact tracing and restrictions on social movement are being globally implemented to prevent and control onward spread of SARS-CoV-2, even though the infection risk modelled on RNA detection by RT-qPCR remains biased as viral shedding and infectivity are not discerned. Thus, we aimed to develop a rapid viability RT-qPCR procedure to infer SARS-CoV-2 infectivity in clinical specimens and environmental samples. Methods: We screened monoazide dyes and platinum compounds as viability molecular markers on five SARS-CoV-2 RNA targets. A platinum chloride-based viability RT-qPCR was then optimized using genomic RNA, and inactivated SARS-CoV-2 particles inoculated in buffer, stool, and urine. Our results were finally validated in nasopharyngeal swabs from persons who tested positive for COVID-19 and in wastewater samples positive for SARS-CoV-2 RNA. Findings: We established a rapid viability RT-qPCR that selectively detects potentially infectious SARS-CoV-2 particles in complex matrices. In particular, the confirmed positivity of nasopharyngeal swabs following the viability procedure suggests their potential infectivity, while the complete prevention of amplification in wastewater indicated either non-infectious particles or free RNA. Interpretation: The viability RT-qPCR approach provides a more accurate ascertainment of the infectious viruses detection and it may complement analyses to foster risk-based investigations for the prevention and control of new or re-occurring outbreaks with a broad application spectrum. Fundings: This work was supported by Spanish Scientific Research Council (CSIC), Generalitat Valenciana, and MICINN co-founded by AEI/FEDER, UE.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.08.21251355

ABSTRACT

The use of SARS-CoV-2 metagenomics in wastewater can allow the detection of variants circulating at community level. After comparing with clinical databases, we identified three novel variants in the spike gene, and six new variants in the spike detected for the first time in Spain. We finally support the hypothesis that this approach allows the identification of unknown SARS-CoV-2 variants or detected at only low frequencies in clinical genomes.

SELECTION OF CITATIONS
SEARCH DETAIL